Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments
نویسندگان
چکیده
Cardinal is an R package for statistical analysis of mass spectrometry-based imaging (MSI) experiments of biological samples such as tissues. Cardinal supports both Matrix-Assisted Laser Desorption/Ionization (MALDI) and Desorption Electrospray Ionization-based MSI workflows, and experiments with multiple tissues and complex designs. The main analytical functionalities include (1) image segmentation, which partitions a tissue into regions of homogeneous chemical composition, selects the number of segments and the subset of informative ions, and characterizes the associated uncertainty and (2) image classification, which assigns locations on the tissue to pre-defined classes, selects the subset of informative ions, and estimates the resulting classification error by (cross-) validation. The statistical methods are based on mixture modeling and regularization.
منابع مشابه
Probabilistic Segmentation of Mass Spectrometry (MS) Images Helps Select Important Ions and Characterize Confidence in the Resulting Segments*
Mass spectrometry imaging is a powerful tool for investigating the spatial distribution of chemical compounds in a biological sample such as tissue. Two common goals of these experiments are unsupervised segmentation of images into newly discovered homogeneous segments and supervised classification of images into predefined classes. In both cases, the important secondary goals are to characteri...
متن کاملmatter: an R package for rapid prototyping with larger-than-memory datasets on disk
Summary We introduce matter , an R package for direct interactions with larger-than-memory datasets, stored in an arbitrary number of files of any size. matter is primarily designed for datasets in new and rapidly evolving file formats, which may lack extensive software support. matter enables a wide variety of data exploration and manipulation steps, and is extensible to many bioinformatics ap...
متن کاملMSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments
UNLABELLED MSstats is an R package for statistical relative quantification of proteins and peptides in mass spectrometry-based proteomics. Version 2.0 of MSstats supports label-free and label-based experimental workflows and data-dependent, targeted and data-independent spectral acquisition. It takes as input identified and quantified spectral peaks, and outputs a list of differentially abundan...
متن کاملMSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation
UNLABELLED MSnbase is an R/Bioconductor package for the analysis of quantitative proteomics experiments that use isobaric tagging. It provides an exploratory data analysis framework for reproducible research, allowing raw data import, quality control, visualization, data processing and quantitation. MSnbase allows direct integration of quantitative proteomics data with additional facilities for...
متن کاملOn the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics
MOTIVATION Spectral count data generated from label-free tandem mass spectrometry-based proteomic experiments can be used to quantify protein's abundances reliably. Comparing spectral count data from different sample groups such as control and disease is an essential step in statistical analysis for the determination of altered protein level and biomarker discovery. The Fisher's exact test, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 31 شماره
صفحات -
تاریخ انتشار 2015